19,199 research outputs found

    Analysis of thin-film structures with nuclear backscattering and x-ray diffraction

    Get PDF
    Backscattering of MeV ^(4)He ions and Seemann-Bohlin x-ray diffraction techniques have been used to study silicide formation on Si and SiO_2 covered with evaporated metal films. Backscattering techniques provide information on the composition of thin-film structures as a function of depth. The glancing-angle x-ray technique provides identification of phases and structural information. Examples are given of V on Si and on SiO_2 to illustrate the major features of these analysis techniques. We also give a general review of recent studies of silicide formation

    Growth, current size and the role of the 'reversal paradox' in the foetal origins of adult disease: an illustration using vector geometry

    Get PDF
    BACKGROUND Numerous studies have reported inverse associations between birth weight and a range of diseases in later life. These have led to the development of the 'foetal origins of adult disease hypothesis'. However, many such studies have only been able to demonstrate a statistically significant association between birth weight and disease in later life by adjusting for current size. This has been interpreted as evidence that the impact of low birth weight on subsequent disease is somehow dependent on subsequent weight gain, and has led to a broadening of the hypothesis into the 'developmental origins of health and disease'. Unfortunately, much of the epidemiological evidence used for both of these interpretations is prone to a statistical artefact known as the 'reversal paradox'. The aim of this paper is to illustrate why, using vector geometry. MATERIALS AND METHODS This paper introduces the key concepts of vector geometry as applied to multiple regression analysis. This approach is then used to illustrate the similar statistical problems encountered when adjusting for current size or growth when exploring the association between birth weight and disease in later life. RESULTS Geometrically, the three covariates – birth size, growth, and current size – span only 2-dimensional space. Regressing disease in later life (i.e. the outcome variable) on any two of these covariates equates to projecting the disease variable onto the plane spanned by the three covariate vectors. The three possible regression models – where any two covariates are considered – are therefore equivalent and yield exactly the same model fit (R2). CONCLUSION Vector geometry illustrates why it is impossible to differentiate between the effects of growth from the effects of current size in studies exploring the relationship between size at birth and subsequent disease. For similar reasons, it is impossible to differentiate between the effects of growth and the effects of birth weight. Assessing the 'independent' impact of growth on later disease by adjusting for either birth weight or current size is therefore illusory

    Influence of bandwidth restriction on the signal-to-noise performance of a modulated PCM/NRZ signal, part 2

    Get PDF
    Analyzing effects of bandlimiting on performance of digital transmission corrupted by additive white Gaussian noise by averaging and series expansio

    Quantitative assessment of Earth’s radiation belt modeling

    Full text link
    The “Quantitative Assessment of Radiation Belt Modeling” focus group was in place at Geospace Environment Modeling from 2014 to 2018. The overarching goals of this focus group were to bring together the current state‐of‐the‐art models for the acceleration, transport, and loss processes in Earth's radiation belts; develop event‐specific and global inputs of wave, plasma, and magnetic field to drive these models; and combine all these components to achieve a quantitative assessment of radiation belt modeling by validating against contemporary radiation belt measurements. This article briefly reviews the current understanding of radiation belt dynamics and related modeling efforts, summarizes the activities and accomplishments of the focus group, and discusses future directions.Accepted manuscrip

    Quantitative assessment of radiation belt modeling

    Full text link
    The “Quantitative Assessment of Radiation Belt Modeling” focus group was in place at Geospace Environment Modeling from 2014 to 2018. The overarching goals of this focus group were to bring together the current state‐of‐the‐art models for the acceleration, transport, and loss processes in Earth's radiation belts; develop event‐specific and global inputs of wave, plasma, and magnetic field to drive these models; and combine all these components to achieve a quantitative assessment of radiation belt modeling by validating against contemporary radiation belt measurements. This article briefly reviews the current understanding of radiation belt dynamics and related modeling efforts, summarizes the activities and accomplishments of the focus group, and discusses future directions.Accepted manuscrip

    Vibration signature analysis of multistage gear transmission

    Get PDF
    An analysis is presented for multistage multimesh gear transmission systems. The analysis predicts the overall system dynamics and the transmissibility to the gear box or the enclosed structure. The modal synthesis approach of the analysis treats the uncoupled lateral/torsional model characteristics of each stage or component independently. The vibration signature analysis evaluates the global dynamics coupling in the system. The method synthesizes the interaction of each modal component or stage with the nonlinear gear mesh dynamics and the modal support geometry characteristics. The analysis simulates transient and steady state vibration events to determine the resulting torque variations, speeds, changes, rotor imbalances, and support gear box motion excitations. A vibration signature analysis examines the overall dynamic characteristics of the system, and the individual model component responses. The gear box vibration analysis also examines the spectral characteristics of the support system

    Surface morphological evolutions on single crystal films by strong anisotropic drift-diffusion under the capillary and electromigration forces

    Get PDF
    The morphological evolution of voids at the unpassivated surfaces and the sidewalls of the single crystal metallic films are investigated via computer simulations by using the novel mathematical model developed by Ogurtani relying on the fundamental postulates of irreversible thermodynamics. The effects of the drift-diffusion anisotropy on the development of the surface morphological scenarios are fully explored under the action of the electromigration (EM) and capillary forces (CF), utilizing numerous combination of the surface textures and the directions of the applied electric field. The interconnect failure time due to the EM induced wedge shape internal voids and the incubation time of the oscillatory surface waves, under the severe instability regimes, are deduced by the novel renormalization procedures applied on the outputs of the computer simulation experiments.Comment: 41 pages, 18 figures. related simulation movies utilizing numerous combination of the surface texture, see http://www.csl.mete.metu.edu.tr/aytac/thesis/movies/index.ht

    Maximized string order parameters in the valence bond solid states of quantum integer spin chains

    Full text link
    We propose a set of maximized string order parameters to describe the hidden topological order in the valence bond solid states of quantum integer spin-S chains. These optimized string order parameters involve spin-twist angles corresponding to ZS+1Z_{S+1} rotations around zz or xx-axes, suggesting a hidden ZS+1×ZS+1Z_{S+1}\times Z_{S+1} symmetry. Our results also suggest that a local triplet excitation in the valence bond solid states carries a ZS+1Z_{S+1} topological charge measured by these maximized string order parameters.Comment: 5 pages, 1 figur

    Dynamics of Multistage Gear Transmission with Effects of Gearbox Vibrations

    Get PDF
    A comprehensive approach is presented in analyzing the dynamic behavior of multistage gear transmission systems with the effects of gearbox induced vibrations and mass imbalances of the rotor. The modal method, with undamped frequencies and planar mode shapes, is used to reduce the degrees of freedom of the gear system for time-transient dynamic analysis. Both the lateral and torsional vibration modes of each rotor-bearing-gear stage as well as the interstage vibrational characteristics are coupled together through localized gear mesh tooth interactions. In addition, gearbox vibrations are also coupled to the rotor-bearing-gear system dynamics through bearing support forces between the rotor and the gearbox. Transient and steady state dynamics of lateral and torsional vibrations of the geared system are examined in both time and frequency domains to develop interpretations of the overall modal dynamic characteristics under various operating conditions. A typical three-stage geared system is used as an example. Effects of mass imbalance and gearbox vibrations on the system dynamic behavior are presented in terms of modal excitation functions for both lateral and torsional vibrations. Operational characteristics and conclusions are drawn from the results presented
    corecore